Saturday Nov 12, #SFN11, poster A27 = me

Update: The poster is now available at Nature Precedings.

Still acquiring histological images for my SfN poster. My recurring problem is that I end up taking pictures of things because they’re pretty and not because they have anything to do with the task at hand. Today’s case in point:

Well, this does relate to my SfN poster a little bit. Red shows cell nuclei, most of which are dentate gyrus granule neurons. And white is GFAP immunostaining, which largely labels astrocytes but in this part of the brain also labels radial glia, the stem cells (or to be less controversial, “precursor” cells) of the hippocampus. Radial glia can be identified by the long process (almost like a dendrite) that they extend through the granule cell layer. There are a few in the above picture. Continue reading

In press: The neurogenesis-depression hypothesis, confirmed.

A transgenic tool for eliminating adult neurogenesis.

The idea that adult neurogenesis protects individuals from depression is perhaps the single greatest motivator driving neurogenesis research. Not surprisingly, “neurogenesis depression” is the most common behavioral keyword that brings people to this blog (followed closely by “pattern separation”). So I’m excited to say that we will soon be publishing what (I think) is the best evidence that impaired adult neurogenesis actually causes depressive symptoms (in mice). The neurogenesis-depression hypothesis is over 10 years old and yet there is largely only correlational evidence linking neurogenesis to depression and no direct evidence that impaired adult neurogenesis leads to depressive symptoms. Naturally, this has led to skepticism (e.g. see this paper by Robert Sapolsky, and discussion by fellow bloggers: scicurious, neurocritic, neuroskeptic). A key factor in our study was stress: mice that lacked neurogenesis often seemed very normal when they were happily going about their business (as in previous studies by other groups). However, following stress, mice lacking neurogenesis had elevated levels of stress hormones and they also showed more depressive behaviors (or depressive-like, if you prefer). I hope to go into more detail soon.

For now, here is the abstract:

Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Jason S. Snyder, Amélie Soumier, Michelle Brewer, James Pickel & Heather A. Cameron. National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.

Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to specifically inhibit adult neurogenesis, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic–pituitary–adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.

*image is of GFAP-driven thymidine kinase in a mouse brain (GFAP in green and thymidine kinase in red). In the presence of ganciclovir, any cell that expresses thymidine kinase dies when it attempts to divide. In this case those cells would be the radial glial stem cells that produce new neurons. These were the mice used to stop neurogenesis in the majority of the experiments.

UPDATE: Ed Yong at Discover Magazine and Scicurious at Scientific American have great summaries of the findings and their significance. And the Drugmonkey blog attacks the question of whether or not a depression study in mice can be relevant for humans.