Tag Archives: retrovirus

Virus: a new tool for generating pretty pictures

Now that I have something to show for it, let this be a formal announcement that I’ve returned to Toronto to join Paul Frankland’s lab (and therefore the larger Josselyn-Frankland group). I’ve always liked their work and one of the techniques I’m excited to learn is the use of viruses to alter gene expression in neurons. BECAUSE THIS WILL ALLOW ME TO TAKE PRETTY PICTURES!!! I will also say that this will be a short (but hopefully sweet) stay as I’ll be leaving at the end of the year to start my own lab in the Psychology Department at the University of British Columbia (!).

Now, on with the pictures! As always, I recommend high-res viewing (click on the image to view it, bigger, on Flickr).

Using a retrovirus, which infects dividing cells, I made the amazing discovery of four adult-born cells which all had the exact same shape and were located right next to each other!
Continue reading Virus: a new tool for generating pretty pictures

Are new neurons really more excitable? (yes)

ResearchBlogging.orgSome facts on neuronal excitability:

  1. Excitable: the ability to fire action potentials.
  2. More excitable: fires action potentials, but more.
  3. More LTP: not the same as more excitable.
  4. Less inhibition: also not the same as more excitable, though the two may go hand in hand.
  5. The Scholarpedia page on neuronal excitability, which was last modified on 13 August 2009, has been accessed 49,025 times, and contains no information (peer review is slow).

One of the claims that is often made is that adult-born neurons are more plastic and more excitable than older neurons.  This despite there being little evidence (until recently) that new neurons indeed are more excitable. But, hey, “excitable” sounds great alongside “plastic”. The Schmidt-Hieber paper did show that new neurons are more excitable, though it wasn’t their main focus and it is only occasionally referenced as evidence for greater excitability.

My misunderstanding that there are no thorough investigations of new neuron excitability was brought to an end recently when I was fortunate to have an infant-free moment (In which I was able to read two papers in the same evening, plus an entire New Yorker article over breakfast. Amazing.) One of the papers was Reliable Activation of Immature Neurons in the Adult Hippocampus by Mongiat et al. from Alejandro Schinder’s lab, which I really should have read long ago. Continue reading Are new neurons really more excitable? (yes)

Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons

young neuron dendritesDendrites are the extensions of neurons that receive incoming information. Neurons have primary dendrites that further split off into secondary and tertiary dendritic branches. On each of these branches are thousands of synaptic connections with axons of neurons carrying incoming information. The result is a dendritic tree that is capable of receiving and integrating a wide array of information within a single neuron. This is one of the neurobiological mechanisms by which different components of a memory are thought to be joined.

Neurons are not born with dendrites and spines – they are acquired during a developmental process that takes many weeks (see here & here). During early development, the pattern of formation of dendrites and spines are sculpted by experience, as might be expected if dendrites and spines are anatomical structures involved in processing and storing sensory information. While a body of work has emerged suggesting adult-born neurons are involved in memory and behavior, no one has yet investigated whether experience is capable of altering the dendritic development of these new neurons. This paper by Tronel et al. is therefore very important because it is the first to look at this phenomenon. They show a dramatic acceleration of dendritic development in response to learning, suggesting a potentially powerful role for new neurons in storing and processing information.
Continue reading Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons

Everything you always wanted to know about neurogenesis timecourses (but were afraid to ask)

Most studies of adult neurogenesis are concerned with neuronal age. Or at least they should be. This is because new neurons develop from a stage where they have no excitatory synapses to one where they have many. If we assume the traditional view that information is stored at excitatory synaptic connections, then young neurons are initially useless and only become physiologically and behaviorally meaningful when they have matured to a point where they can relay and process information. It is therefore critical that the developmental timecourse of new neurons be mapped out, so we know when new neurons become functionally relevant, or whether they might even have different functions at different ages.

Below are what I hope to be comprehensive visual collages of all published timecourse experiments, where a certain property of new neurons is examined at multiple (≥ 3) different ages. They are grouped by studies of: 1) cell survival, 2) marker expression, 3) functionality, and 4) miscellaneous studies that do not quite fit into the first 3 categories. I’ve ordered the data roughly chronologically and have included the first author’s name and publication year so you can read deeper, if needed. Indeed, if you know these studies already, a brief look at the graphs will bring back the take home message. However, since the data is stripped of text, if the studies are unfamiliar, you’ll have to go to the original source to figure out what the heck they mean (use Pubmed to at least obtain abstracts for the original studies if I didn’t provide a direct link).

Personally, I like timecourse studies for the same reason I like to have all my music albums or books visible at the same time: at a single glance they provide a lot of information – each individual stage of maturation can be interpreted within a bigger picture. The result of these many hours of work will either be a) that the purpose of adult neurogenesis will become immediately clear, or b) that we’ll all have some fancy collages to pin on our bulletin boards and look intelligent.

The survival timecourse

addition of new neurons

New neurons are born and then many die. The survival timecourse answers the questions: How many new neurons are born? Where are they born and where do they end up, anatomically? How many of them survive and can their survival be altered? Survival timecourses are typically performed by injecting animals with a mitotic marker that will label new neurons as they’re being born, e.g. ³H-thymidine (old school), BrdU (tried and true – example), or a GFP-expressing retrovirus (new school). At a later date one can then detect these birthdated new neurons and count them, see where they’re located etc.

Continue reading Everything you always wanted to know about neurogenesis timecourses (but were afraid to ask)