Tag Archives: doublecortin

Dorsoventral vs. Septotemporal hippocampus

Everybody knows what the hippocampus is for: memory. And…maybe something about anxiety or depression? Yes – over the last 10 years or so many studies have been published showing that the hippocampus has these two roles and that the mnemonic and emotional functions of the hippocampus are associated with its septal (dorsal) and temporal (ventral) ends, respectively. This new knowledge means that we’ve had to reorient our perspective. What we see when we consider the septal hippocampus may not be the same if we only consider its temporal end. My goal here is not to provide a review of the memory vs. emotional functions of the hippocampus (btw this dichotomy is a vast oversimplification). Instead, I’d like to talk about how people have differentiated these two ends of the hippocampus in their analyses. I’m also happy to showcase a bunch of pretty anatomical images that will probably never be published in a traditional journal article. Continue reading Dorsoventral vs. Septotemporal hippocampus

Olfactory bulb neurogenesis big bigger biggest

And now for a journey outside (rostral, to be precise) of my comfort zone. These three pictures show new neurons in the mouse olfactory bulb at successively greater magnifications. Probably inspired by the science magazine I read as a kid that would show high mag photos of everyday objects (with corresponding low mag photos as the answers).

With a 10x objective I could capture nearly the entire bulb (saggital section) in a single field. You can see newborn BrdU+ cells (green) scattered throughout, most co-labeled with doublecortin (red). In the bottom left area you can see about a dozen glomeruli – groups of neurons that represent different odors, located just one synapse upstream of the nasal epithelium. Whereas the majority of adult-born olfactory neurons are inhibitory interneurons, a smaller number of new neurons surrounding the glomeruli (periglomerular neurons) are dopaminergic. (click on the images for full sized versions – 2048 x 2048 pixels)

low magnification doublecortin and BrdU

Continue reading Olfactory bulb neurogenesis big bigger biggest

Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons

young neuron dendritesDendrites are the extensions of neurons that receive incoming information. Neurons have primary dendrites that further split off into secondary and tertiary dendritic branches. On each of these branches are thousands of synaptic connections with axons of neurons carrying incoming information. The result is a dendritic tree that is capable of receiving and integrating a wide array of information within a single neuron. This is one of the neurobiological mechanisms by which different components of a memory are thought to be joined.

Neurons are not born with dendrites and spines – they are acquired during a developmental process that takes many weeks (see here & here). During early development, the pattern of formation of dendrites and spines are sculpted by experience, as might be expected if dendrites and spines are anatomical structures involved in processing and storing sensory information. While a body of work has emerged suggesting adult-born neurons are involved in memory and behavior, no one has yet investigated whether experience is capable of altering the dendritic development of these new neurons. This paper by Tronel et al. is therefore very important because it is the first to look at this phenomenon. They show a dramatic acceleration of dendritic development in response to learning, suggesting a potentially powerful role for new neurons in storing and processing information.
Continue reading Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons

Everything you always wanted to know about neurogenesis timecourses (but were afraid to ask)

Most studies of adult neurogenesis are concerned with neuronal age. Or at least they should be. This is because new neurons develop from a stage where they have no excitatory synapses to one where they have many. If we assume the traditional view that information is stored at excitatory synaptic connections, then young neurons are initially useless and only become physiologically and behaviorally meaningful when they have matured to a point where they can relay and process information. It is therefore critical that the developmental timecourse of new neurons be mapped out, so we know when new neurons become functionally relevant, or whether they might even have different functions at different ages.

Below are what I hope to be comprehensive visual collages of all published timecourse experiments, where a certain property of new neurons is examined at multiple (≥ 3) different ages. They are grouped by studies of: 1) cell survival, 2) marker expression, 3) functionality, and 4) miscellaneous studies that do not quite fit into the first 3 categories. I’ve ordered the data roughly chronologically and have included the first author’s name and publication year so you can read deeper, if needed. Indeed, if you know these studies already, a brief look at the graphs will bring back the take home message. However, since the data is stripped of text, if the studies are unfamiliar, you’ll have to go to the original source to figure out what the heck they mean (use Pubmed to at least obtain abstracts for the original studies if I didn’t provide a direct link).

Personally, I like timecourse studies for the same reason I like to have all my music albums or books visible at the same time: at a single glance they provide a lot of information – each individual stage of maturation can be interpreted within a bigger picture. The result of these many hours of work will either be a) that the purpose of adult neurogenesis will become immediately clear, or b) that we’ll all have some fancy collages to pin on our bulletin boards and look intelligent.

The survival timecourse

addition of new neurons

New neurons are born and then many die. The survival timecourse answers the questions: How many new neurons are born? Where are they born and where do they end up, anatomically? How many of them survive and can their survival be altered? Survival timecourses are typically performed by injecting animals with a mitotic marker that will label new neurons as they’re being born, e.g. ³H-thymidine (old school), BrdU (tried and true – example), or a GFP-expressing retrovirus (new school). At a later date one can then detect these birthdated new neurons and count them, see where they’re located etc.

Continue reading Everything you always wanted to know about neurogenesis timecourses (but were afraid to ask)