Tag Archives: abrous

New data on neurogenesis, pattern separation, context discrimination and stress

One of the leading hypothesized functions for adult hippocampal neurogenesis in memory is pattern separation. Loosely defined, pattern separation is the process of making similar patterns of neural activity more distinct. This is clearly relevant for learning and memory since we have many experiences that are similar to each other but nonetheless must be remembered as distinct. For example, the girl who sat behind me in 2nd year organic chemistry bore a striking similarity to the woman who later became the mother of my firstborn child (long, dark curly hair, sense of humour etc). But perhaps due to a dysfunctional hippocampus it wasn’t until halfway through the term that I was able to discriminate these 2 individuals.

In its true form, pattern separation is a neurophysiological computation that is very difficult to measure since we know very little about how information is represented, in terms of action potential firing patterns in assemblies of cells (i.e. how can you measure how information has changed if you don’t have a good handle on what the incoming neural activity meant in the first place?). There has been some progress suggesting the dentate gyrus may pick up on minor changes in the environment and perform such a function. And so behaviourists have been keen to test whether the dentate gyrus and immature neurons are important for this function, using tasks such as discriminative context fear conditioning (is this the place where I received a shock?) or object location tests (did these objects move just a tiny bit since I saw them last?). When the dentate gyrus is compromised, or when neurogenesis is reduced, we sometimes see deficits in these behaviours. If you have a look at the pattern separation blog you’ll see an impressive interdisciplinary discussion of what these findings mean (and don’t mean!). In short, they are consistent with a pattern separation role but they don’t prove that the dentate is actually performing pattern separation at a physiological level.

Here I present some new data on adult neurogenesis, context fear discrimination, and stress hormones. It’s been on my hard drive since 2008. Which is ridiculous since it reflects many long days of putting mice into boxes and the findings are pretty intriguing, if inconclusive.

So finally I wrote it up and have published it on FigshareDownload it there and read along.

The basic idea is that I was training neurogenesis-deficient GFAP-TK mice in a discriminative context fear paradigm. The hypothesis was that, if the dentate gyrus and adult neurogenesis is important for pattern separation, then we would expect that the TK mice would be impaired, and show similar levels of freezing in the so-called “safe” and “shock” contexts. This is now obvious given work by McHughTronel, Sahay, Niibori, Kheirbeck.

Figure 1 - circles vs stripes
Fig 1-circles vs stripes

To make the discrimination challenging, I started with a discrimination paradigm where the 2 contexts were quite similar and the only difference was the pattern on the walls of the 2 contexts: circles or stripes. During the training session it appeared to be too challenging – the mice showed no discrimination whatsoever. Interesting finding #1: when tested 1 week later, the WT mice did show a discrimination whereas the TK mice did not. To get the most out of the experiment, I re-tested the mice the following day: mice that were tested in the shock context on test 1 were tested in the safe context on test 2 and vice versa. Interesting finding #2: There was a carry over effect such that the WT mice again discriminated, but on test 2 they now froze more in the safe context! On test 2 corticosterone levels were also greater in the mice tested in the safe context.

This experiment (“Circles vs Stripes”) suggests to me that neurogenesis may indeed be involved in some sort of pattern separation function, since the TK mice never successfully discriminated. But it is interesting that WT mice only discriminated during the test. Usually, context fear memories become more generalized with time (see Wiltgen, Biedenkapp, Wang) but here they are becoming more accurate. I don’t have a solid explanation for this but wonder if the simplicity of the context difference plays a role. If mice were able to form a simple stimulus-shock association (circle-shock or stripe-shock association, rather than complex context-shock association) then these memories might not subject to the same generalization/interference processes that typically occur during consolidation. This result is also a reminder that memory may be intact, even when there isn’t behavioural evidence. Regarding the reversal effect, the paradigm is different but reminiscent of findings by Beracochea showing that stress can alter which of 2 context memories dominates at the time of retrieval. It is also worth noting that blood samples were taken 30min after testing for corticosterone measurements, using a submandibular cheek-lancet method. This is a stressful procedure and may have altered the memory retrieved on test #1, and contributed to the carryover effect on test #2.

Figure 2 - mo diff
Figure 2 – mo diff

To see if we could pull out a context discrimination difference during training, I repeated the experiment but changed many more features between the 2 contexts (shape, odours etc). This variation was code named MO DIFF since the contexts were made “more different” and I have kept that name since this isn’t a journal. If anything, the TK mice now did a better job of discriminating (at least during training). Compared to Circles vs Stripes there was weaker discrimination during Mo Diff testing and also fewer reversal/carryover effects between tests #1 and #2. TK mice had huge elevations in corticosterone compared to WT mice at the time of fear memory retrieval.

Figure 3 - stress+mo diff
Figure 3 – stress+mo diff

For the last experiment I had some mice that had been subjected to chronic stress so I figured why not then test them on Mo Diff? The mice in Mo Diff didn’t remember super well and chronic stress enhances fear conditioning so…we found that these mice indeed discriminated very well during training and testing. No difference between WT and TK mice during training but TK mice discriminated identically on tests #1 and #2. In contrast, WT mice again showed a carryover effect such that there was no discrimination on test #2.


Final thoughts: This dataset may raise more questions than it answers and for this reason my work with GFAP-TK mice then took a more straightforward route, eliminating memory from the equation and investigating whether new neurons are important for innate responses to psychological stress. In any case:

  1. The data support a role for neurogenesis in context discrimination, and potentially pattern separation, but it suggests that new neurons may bias towards both separation or generalization depending on the conditions.
  2. New neurons may be important for accurate consolidation of memory
  3. Neurogenesis regulates stress hormone levels during memory retrieval
  4. Testing order strongly influences whether mice express fear in the appropriate context

Reference: Snyder, Jason; Cameron, Heather A. (2013): Reduced adult neurogenesis alters behavioural and endocrine discriminative fear conditioning. figshare.

Impaired adult neurogenesis leads to depression – is it realistic?

depressionAbout a year ago we published a paper linking adult neurogenesis to depression. A causal sort of ‘linking’, right? I mean, we found that, when adult neurogenesis was eliminated, mice had elevated glucocorticoids in response to stress and showed depressive-like behaviours1. So doesn’t this mean that impaired adult neurogenesis could lead to depression in humans, in the real world?

Well, it could…and we did end our paper with the following:

Because the production of new granule neurons is itself strongly regulated by stress and glucocorticoids, this system forms a loop through which stress, by inhibiting adult neurogenesis, could lead to enhanced responsiveness to future stress. This type of programming could be adaptive, predisposing animals to behave in ways best suited to the severity of their particular environments. However, maladaptive progression of such a feed-forward loop could potentially lead to increased stress responsiveness and depressive behaviours that persist even in the absence of stressful events.

We had to end it somehow – I was just happy that after 3 years of work we were DONE2! But our final speculation makes it clear that, while this chapter may be done, the story is not. And this fact was rightly pointed out in a recent commentary by Lucassen et al. in Molecular Psychiatry3, where they continue the discussion and bring up some good points. Here is a loose elaboration on some of the outstanding issues they bring up. Continue reading Impaired adult neurogenesis leads to depression – is it realistic?

Everything you always wanted to know about neurogenesis timecourses (but were afraid to ask)

Most studies of adult neurogenesis are concerned with neuronal age. Or at least they should be. This is because new neurons develop from a stage where they have no excitatory synapses to one where they have many. If we assume the traditional view that information is stored at excitatory synaptic connections, then young neurons are initially useless and only become physiologically and behaviorally meaningful when they have matured to a point where they can relay and process information. It is therefore critical that the developmental timecourse of new neurons be mapped out, so we know when new neurons become functionally relevant, or whether they might even have different functions at different ages.

Below are what I hope to be comprehensive visual collages of all published timecourse experiments, where a certain property of new neurons is examined at multiple (≥ 3) different ages. They are grouped by studies of: 1) cell survival, 2) marker expression, 3) functionality, and 4) miscellaneous studies that do not quite fit into the first 3 categories. I’ve ordered the data roughly chronologically and have included the first author’s name and publication year so you can read deeper, if needed. Indeed, if you know these studies already, a brief look at the graphs will bring back the take home message. However, since the data is stripped of text, if the studies are unfamiliar, you’ll have to go to the original source to figure out what the heck they mean (use Pubmed to at least obtain abstracts for the original studies if I didn’t provide a direct link).

Personally, I like timecourse studies for the same reason I like to have all my music albums or books visible at the same time: at a single glance they provide a lot of information – each individual stage of maturation can be interpreted within a bigger picture. The result of these many hours of work will either be a) that the purpose of adult neurogenesis will become immediately clear, or b) that we’ll all have some fancy collages to pin on our bulletin boards and look intelligent.

The survival timecourse

addition of new neurons

New neurons are born and then many die. The survival timecourse answers the questions: How many new neurons are born? Where are they born and where do they end up, anatomically? How many of them survive and can their survival be altered? Survival timecourses are typically performed by injecting animals with a mitotic marker that will label new neurons as they’re being born, e.g. ³H-thymidine (old school), BrdU (tried and true – example), or a GFP-expressing retrovirus (new school). At a later date one can then detect these birthdated new neurons and count them, see where they’re located etc.

Continue reading Everything you always wanted to know about neurogenesis timecourses (but were afraid to ask)